Wind and Atmospheric Circulation

Chapter 5: Atmospheric and Oceanic Circulation

Factors that affect wind

- Gravity
- Pressure Gradient Force
- Coriolis Effect
- Friction
- Physical Features of the Earth

Understanding Atmospheric Pressure

- Air is a gas
 - Motion and collision of gas molecules create pressure
 - Pressure is the force exerted by gas molecules
- General Principle –
 Air moves from areas
 of high pressure to
 low

Atmospheric Pressure

- Air is constantly pushing down to the Earth's surface
 - Air pressure is highest at sea level
 - Standard air pressure is 14.7 lbs per square inch

Atmospheric Density and Altitude

Density: The amount of matter in a given unit

Atmospheric Pressure

- Barometric pressure
 - Using a barometer you can measure changes in Atmospheric pressure
 - Using set of known variables

Mapping Air Pressure: Isobar

Pressure Gradient Force

- Wind is the result of air moving horizontally along the earth's surface
 - Moving from areas of high pressure to low pressure
- Caused by unequal heating of the earth's surface

Cyclone and Anticyclone

Cyclone: lowpressure cell Air converges and ascends Anticyclone: highpressure cell Air descends and diverges

PGF and wind velocity

- The larger the pressure gradient the higher the wind velocity
- Heavier air remains closer to earth's surface as warmer air rises

ff	Miles per hour
0	Calm
	1-2
	3–8
	9–14
<u></u>	15-20
ш_	21-25
Ш_	26-31
Ш	32-37
Ш_	38-43
Ш_	44-49
Ш-	50-54
	55-60
k	61–66
W	67–71
<u>~</u>	72-77
W_	78-83
W_	84–89
W	119–123

Coriolis Effect

- Direction of Movement
 - Response to Earth's rotation
 - Deflects the movement of air from high to low pressure

Impact of Coriolis Effect

- Helps to cause winds to move in more of a spiral instead of straight-line
- Wind deflected to the right in Northern Hemisphere and left in Southern
- Geostrophic Winds: Above 1000m (without friction) winds can travel parallel to Barometric Gradients

Friction

- Wind speeds slowed and even change direction at lower altitudes
 - Drag along earth's surface
 - Friction works opposite the direction of wind
 - Friction layer only a factor for about 1000m above the earth's surface

Sea and Land Breezes

- Sea Breezes when the land is significantly warmer than sea (usually summer or day)
- Land Breeze when the land is significantly cooler than the sea (usually winter or night)

Foehn/Chinook Winds

 Interaction between winds and mountains lead to differences between windward and leeward sides

Katabatic Winds and Valley Winds

- Katabatic Winds Winds that flow from cooler mountain tops to warmer lowland areas
 - Can also be from higher polar areas to lower warmer open seas
- Valley winds affected by daily patterns of warming and cooling

Wind Speeds in the United States

General Patterns of Air Movement

General Patterns of Air Movement: Hadley Cells, Ferrel Cells, and Polar Cells

General Patterns of Air Movement: Doldrums and Horse Latitudes

- Subtropical Highs (Horse Latitudes)
 (30 ° N and S) Caused by
 simultaneous movements of Hadley
 Cells and Ferrel Cells
 - Associated with little moisture and little wind
- Intertropical Convergence Zone (ITCZ)
 Located near equator Caused by
 movement of air up between two
 Hadley cells (aka Doldrums)
 - Characterized by lots of precipitation but little wind

Easterlies and Westerlies

- **Trade Winds** As winds from Hadley and Ferrel cells work back towards areas of low pressure the Coriolis effect causes them to curve
- Westerlies Winds moving from low pressure to low pressure away from poles again curving
- Winds named after the direction they come from

Jet streams

- Two cores of high-speed winds at high altitudes
 - Form where warm and cold air masses meet in atmosphere
 - 5-9 miles high
 - High altitude and high speed (110 250mph)
 - Usually 2-3 per hemisphere
 - Polar front jet stream
 - Subtropical front jet stream

Monsoons

- Summer causes heat difference over Indian Subcontinent
 - Shifts the ITCZ causing air filled with moisture to drop into India and Southeast Asia

Rossby Waves

- Disruptions in the Polar Front
- Caused by the movement of warmer air northward
 - Causes undulations of polar air into lower latitudes

