Tectonic Theory

Chapter 11: The Dynamic Planet

Chapter 12: Tectonics, Earthquakes, & Volcanism

The Theory — Charles Lyell

- Uniformitarianism Physical processes going
 on today have been
 going on throughout
 Earth's history (Published
 in 1830-1833)
- Stratigraphic Ages Idea that history of earth could be observed in strata of earth's layers

The Theory – Alfred Wegener

- Originally purposed by Antonio Snider-Pelligrini in 1858
- Theory further developed and associated with Alfred Wegener in 1912 (Published in *The Origin of Continents and Oceans* in 1915)
 - Trying to explain why look-alike plants and animals existed on different continents
 - Heavily criticized due to inability to explain mechanisms by which continents move

The Theory - Visualized

Continental Drift in Motion

The Theory – Alfred Wegener

- Continental drift hypothesis:
 - Supercontinent called Pangaea began breaking apart about 200 million years ago
 - Continents "drifted" to present positions
 - Continents "broke" through the ocean crust

The Evidence

- Based on observations of similarities between continents
 - 1. Continental Slope Fit
 - 2. Geological composition and structure match
 - 3. Paleo-Biogeographic Evidence
 - 4. Paleo-Climate Evidence

The Evidence – Slope Fit

- Wegener (among others)
 recognized the apparent
 connections between
 coastlines of distant continents
 - Especially Africa and South America
 - Geologically match up as well

The Evidence – Matching Geological Folds

 Continuation of mountain ranges along continental boundaries

The Evidence – Geological Age of Land

The Evidence – Paleo-Biogeographic

- Fossil record of same species found on multiple continents
 - Helped biogeography develop two main theories of biogeographic distributions
 - Vicariance and Dispersal

The Evidence – Paleoclimate Evidence

- Evidence of areas that are now temperate having once been in more tropical zones
- Effects of glaciation on areas that are now in tropical zones

Palm fossil from Utah Green River Basin

The Process

- Plate Tectonics Revolution of 1966
 - Number of papers published that supported Wegener's theory
 - Better understanding of Plate Tectonics
 - Plates sit atop plastic Asthenosphere
 - Convection heating moves plates
- Earth's Crust is made up of Continental (felsic) Plates, and Oceanic (mafic) Plates

As Discovery increases so does understanding

Plate Tectonics

The Process – Plate Movement

- Plates moved by subterranean pressure and movement
 - Convergent Boundaries Two plates collide causing **subduction**
 - Divergent Boundaries Plates pulling apart crating rifts
 - Transform Boundaries Plates moving parallel to one another, not resulting in subduction or separation

Three Types of Plate Boundaries

The Process – Earth's Heat

Slab Push and Slab Pull

- Slab Push Rising magma pushes the ridges up and gravity pushes the ocean floor toward the trench
- Slab Pull The slab is cold and dense and pulls the plate

Directions and Rates of Plate Motions

Convergent Boundaries

- Plates come together, an ocean trench forms and lithosphere is subducted into the mantle
 - 1. Oceanic to Continental Convergence
 - Denser oceanic slab sinks into the asthenosphere, creates coastal mountains
 - 2. Oceanic to Oceanic Plate Convergence
 - One subducts below the other, volcanic islands form along boundary
 - 3. Continental to Continental Plate Convergence
 - One subducts below the other, Mountain range form along boundary

Oceanic-Continental Convergent Plate Boundary

Oceanic-oceanic Convergent Plate Boundary

Continental-Continental Convergent Plate Boundary

Divergent Boundaries

- Two plates pull apart from one another
- Mantle comes up between and creates new land or seafloor
 - Creates Ocean Ridges

Case Study: Mid-Atlantic Ridge

- Ocean Mapping has discovered Mid-Atlantic Ridge
 - Roughly 10,000 miles long

Case Study: Great Rift/Dead Sea (Jordan)

Case Study: Þingvellir (Iceland)

Transform Boundaries

- Plates move past each other
- Movement shatters rock and leads to many small earthquakes

