# Oceanography

Chapter 5: Atmospheric and Oceanic Circulations

Chapter 16: Oceans and Coastal Systems

## Classifying Seawater and Freshwater

- If salinity is greater than 3.5%, the seawater is **brine**. (>35ppt)
  - Mostly occurs in enclosed seas
- If salinity is less than 3.5%, the seawater is brackish. (<35ppt)
  - Mostly near land, especially near estuaries
- Freshwater is 0.5 parts per thousand or less



# Ocean Salinity



# Dead Sea (Salinity 300ppt)



## Ocean's Physical Structure



### Oceanic Zones



### The Littoral Zone



#### Seas vs. Oceans

- Seas are smaller than oceans and usually partially surrounded by land
  - Almost all seas buffer land from oceans



## Curious Case of Sargasso Sea

- Surrounded on 4 sides by different currents
  - Only sea in Atlantic not touching any sort of land





#### The Seven Seas?

- More than 50 seas recognized in the world
  - Includes some Gulfs and Bays (but not Aral Sea, Caspian Sea, or Dead Sea)





#### Oceanic Currents

- Surface Currents
  - Caused mainly by winds
- Thermohaline Circulation
  - Caused at depth by differences in temperature and salinity
    - Affects density of water

## Deep-Ocean Thermohaline Circulation

- Differences in temperature and salinity cause water to transfer from areas of high pressure to low density
  - Thermo (heat) Haline (Salinity)





# Thermohaline Circulation and Polar Salinity

 As polar waters freeze surrounding water becomes saltier, resulting in changes in density



#### Surface Currents

 Important for redistributing warm water away from the equator and bringing in cold water from the poles



# Beaufort Wind Scale

|       | Wind                | WMO                | Appearance of Wind Effects                                                                                                     |                                                                                              |  |
|-------|---------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Force | (Knots)             | Classification     | On the Water                                                                                                                   | On Land                                                                                      |  |
| 0     | Less<br>than 1      | Calm               | Sea surface smooth and mirror-like                                                                                             | Calm, smoke rises vertically                                                                 |  |
| 1     | 1-3                 | Light Air          | Scaly ripples, no foam crests                                                                                                  | Smoke drift indicates wind direction, still wind vanes                                       |  |
| 2     | 4-6                 | Light Breeze       | Small wavelets, crests glassy, no breaking                                                                                     | Wind felt on face, leaves rustle,<br>vanes begin to move                                     |  |
| 3     | 7-10                | Gentle Breeze      | Large wavelets, crests begin to break, scattered whitecaps                                                                     | Leaves and small twigs constantly moving, light flags extended                               |  |
| 4     | 11-16               | Moderate<br>Breeze | Small waves 1-4 ft. becoming longer,<br>numerous whitecaps                                                                     | Dust, leaves, and loose paper<br>lifted, small tree branches move                            |  |
| 5     | 17-21               | Fresh Breeze       | Moderate waves 4-8 ft taking longer form,<br>many whitecaps, some spray                                                        | Small trees in leaf begin to sway                                                            |  |
| 6     | 22-27               | Strong Breeze      | Larger waves 8-13 ft, whitecaps common,<br>more spray                                                                          | Larger tree branches moving,<br>whistling in wires                                           |  |
| 7     | 28-33               | Near Gale          | Sea heaps up, waves 13-20 ft, white foam streaks off breakers                                                                  | Whole trees moving, resistance felt<br>walking against wind                                  |  |
| 8     | 34-40               | Gale               | Moderately high (13-20 ft) waves of greater<br>length, edges of crests begin to break into<br>spindrift, foam blown in streaks | Whole trees in motion, resistance<br>felt walking against wind                               |  |
| 9     | <mark>41-4</mark> 7 | Strong Gale        | High waves (20 ft), sea begins to roll, dense<br>streaks of foam, spray may reduce visibility                                  | Slight structural damage occurs,<br>slate blows off roofs                                    |  |
| 10    | 48-55               | Storm              | Very high waves (20-30 ft) with overhanging<br>crests, sea white with densely blown foam,<br>heavy rolling, lowered visibility | Seldom experienced on land, trees<br>broken or uprooted, "considerable<br>structural damage" |  |
| 11    | 56-63               | Violent Storm      | Exceptionally high (30-45 ft) waves, foam patches cover sea, visibility more reduced                                           |                                                                                              |  |
| 12    | 64+                 | Hurricane          | Air filled with foam, waves over 45 ft, sea<br>completely white with driving spray,<br>visibility greatly reduced              |                                                                                              |  |

# Migration of the Pacific Rubber Ducky



### Oceanic Gyres

Large rotating
oceanic currents
created by warm
and cold waters
circulating



## Great Pacific Garbage Patch







### Antarctica Convergence

- Antarctic Circumpolar Current
  - Formed by polar westerlies winds
  - Ring of cold water the continually flows around Antarctica
    - Forms Southern Ocean
  - Warm water from subarctic pushed up nutrient rich cold waters from deep



# The Drake Passage







#### El Niño and La Nina

- In normal pattern trade winds carry warm water away from Americas to Asia
- El Nino is when winds shift resulting in warm water staying near Americas
- La Nina is stronger trade winds that pull up more cold water from depth





#### Tides

- Tides are the twice daily changes in sealevel
- Affected by the gravitational pull of the sun and moon
  - Also impacted by shoreline shape, ocean basin characteristics, and latitude



#### Waves

- Created by differences in friction between wind and ocean ocean floor
  - Swell is waves that have traveled beyond origin





#### Tsunamis

• Tsunamis are produced by sudden and sharp motions in the seafloor, caused by earthquakes, submarine landslides, or eruptions of

undersea volcanoes.





## Ecological Concerns of the Oceans

- Pollution
- Overfishing
- Ocean Acidification
- Warming
- Sea Level Rise

#### Ocean Acidification

- Oceans absorb CO<sub>2</sub> from the atmosphere, form carbonic acid in the seawater, and reduce the ocean pH value.
  - Current ocean mean pH is 8.1.
  - pH could decrease by 0.4 to 0.5 units by the end of this century.



## Coral Bleaching

Oceanic
acidification
and increased
temperatures
causing
widescale coral
bleaching



#### **HEALTHY CORAL**

Coral and algae depend on each other to survive.



#### STRESSED CORAL

2 If stressed, algae leave the coral.



#### **BLEACHED CORAL**

3 Coral is left bleached and vulnerable.



# Global Coral Bleaching



#### Sea Level Rise

• As glacial and ice cap ice melts sea levels rise

• If Antarctica and Greenland became ice-free, sea level would rise at least 65

m worldwide.

As water heats it expands





# Overfishing





