Heat Transfer

Chapter 4: Atmospheric Energy and Global Temperatures

Surface-Energy Budget

- Systems through which the earth balances the amount of incoming energy
 - Most of sun's energy is reflected before getting to surface
 - Earth must expel roughly 48% of energy that reaches surface
 - About 25% by evaporation
 - About 5% by convection
 - About 17% by thermal radiation

Surface Energy Balance by Latitude

Energy Balance Lag

 Takes time for surface to heat up and reach maximum amount of energy being reemited

Energy

- Ability to do work (or) changes the state or matter of something
 - Can not be created or destroyed, only changes forms

Heat

- Heat is thermal energy transferred from a warmer object to a cooler object
 - Any object over absolute 0 has heat energy

Temperature

- Temperature is the measurement of average kinetic energy of molecules (heat)
 - Fahrenheit
 - Used in the US and a few others
 - Celsius
 - Most commonly used
 - Kelvin
 - Primarily used for scientific purposes
- Commonly measured with a thermometer
 - Expansion and contraction of a known liquid

Types of Heat Energy Transfer

- Radiation
- Conduction
- Convection

Types of Heat Energy Transfer: Radiation

• Radiation: The transfer of heat through electromagnetic waves

Electromagnetic Radiation

- Forms of Energy that is emitted or reflected as electric or magnetic wavelengths
 - Wavelengths that are able to travel through space without loss of energy
 - The Sun is Earth's ONLY source of energy

Insolation

- Incoming Solar Radiation
- Factors that affect Insolation
 - **Direct Radiation:** Transmission of energy more or less uninhibited
 - **Diffuse Radiation:** Muted transmission due to disruption of passage of radiation
 - Reflected Radiation: Energy that is reemitted by a surface (aka Albedo Radiation)

Transmission, Refraction, and Scattering

- Transmission refers to the passage of shortwave and longwave energy through gases or liquids
- Scattering refers to molecules that are reflected back into space during insolation
- **Refraction** is the redirection of transmission

Refraction and Sunrise/Sunset

 When the sun is low it has to go through more layers of air leading to more refraction and bending of the light

The Albedo Effect

 The Albedo effect refers to the ability of different sections of the Earth's surface to reflect the sun's rays

Nebraska's Albedo Capability (Darker=More Absorption)

Agricultural Implications of Albedo

The Heat Island Effect

TABLE 4.1 Urban Heat Islands: Driving Factors and Clima	atic Response
---	---------------

Driving Factor	Climatic Element and UHI Effect	Explanation
Thermal properties of urban surfaces: metal, glass, asphalt, concrete, brick	Higher net radiation	 Urban surfaces conduct more energy than natural sur- faces such as soil.
Reflective properties of urban surfaces	Lower albedo	 Urban surfaces often have low albedo, so they absorb and retain heat, leading to high net radiation values.
Urban canyon effect	Lower wind speeds More calm periods	 Reflected insolation is conducted into surface materials, thus increasing temperatures. Buildings interrupt wind flows, diminishing heat loss and blocking nighttime radiation to space. Maximum UHI effects occur on calm, clear days and nights.
Anthropogenic heating	Higher temperatures annual average winter minima summer maxima	 Homes, vehicles, and factories generate heat. Heat output may surge with power for heating in winter and air conditioning in summer.
Urban dust dome	More pollutants More cloudiness, including fog More precipitation More thunderstorms Less snowfall, inner city	 Aerosols in urban dust dome raise temperatures by absorbing insolation and reradiating heat to surface. Particulates are condensation nuclei for water vapor, increasing cloud formation and precipitation.
Urban desert effect: less plant cover and more sealed surfaces	Lower relative humidity Less infiltration More runoff Less evaporation	 Cooling effect of evaporation and plant transpiration is reduced or absent. More water flows as runoff because it cannot infiltrate through sealed surfaces to soil. Urban surfaces respond as desert landscapes—storms may cause "flash floods."

Land-Water Heating Differences

- Land freezes and warms much quicker than water
 - Water more affected by evaporation, transparency, movement
 - Specific Heat:
 Water has more
 ability to store
 heat

Case Study: Duluth, Minnesota

Types of Heat Energy Transfer: Convection

- The transfer of heat by mixing or circulation
 - Especially through the movement of liquid or gasses

Types of Heat Energy Transfer: Conduction

Heat is transferred by direct contact with a surface

• The Sun's energy is absorbed by the planet's surface and is radiated

back

Heat Index

- Humidity is connected to the amount of water vapor in the air, wind, and other factors
- Heat index is calculated by pairing humidity with air temperature

Wind Chill

• Wind chill is calculated by pairing air temperature with wind velocity

		Temperature (°F)																		
	C	alm	40	35	30	25	20	15	10	5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45
		5	36	31	25	19	13	7	1	-5	-11	-16	-22	-28	-34	-40	-46	-52	-57	-63
	1	10	34	27	21	15	9	3	-4	-10	-16	-22	-28	-35	-41	-47	-53	-59	-66	-72
	1	15	32	25	19	13	6	0	-7	-13	-19	-26	-32	-39	-45	-51	-58	-64	-71	-77
	:	20	30	24	17	11	4	-2	-9	-15	-22	-29	-35	-42	-48	-55	-61	-68	-74	-81
	h)	25	29	23	16	9	3	-4	-11	-17	-24	-31	-37	-44	-51	-58	-64	-71	-78	-84
	Wind (mph)	30	28	22	15	8	1	-5	-12	-19	-26	-33	-39	-46	-53	-60	-67	-73	-80	-87
	Pu :	35	28	21	14	7	0	-7	-14	-21	-27	-34	-41	-48	-55	-62	-69	-76	-82	-89
×	M	10	27	20	13	6	-1	-8	-15	-22	-29	-36	-43	-50	-57	-64	-71	-78	-84	-91
	4	15	26	19	12	5	-2	-9	-16	-23	-30	-37	-44	-51	-58	-65	-72	-79	-86	-93
J		50	26	19	12	4	-3	-10	-17	-24	-31	-38	-45	-52	-60	-67	-74	-81	-88	-95
		55	25	18	11	4	-3	-11	-18	-25	-32	-39	-46	-54	-61	-68	-75	-82	-89	-97
	•	50	25	17	10	3	-4	-11	-19	-26	-33	-40	-48	-55	-62	-69	-76	-84	-91	-98
Frostbite Times						36	30 minutes 10 minutes 5 minutes													