## Earth-Sun Relations

Influence of the Sun on Earth

Chapter 2

#### Earth's Rotations and Revolutions

- Earth completes one Revolution around the sun every 365 ¼ days
  - 30 kilometers a second or 67,000 miles an hour
- Earth completes one rotation every 24 hours
  - 460 meters a second or 1000 miles an hour



## Earth's Obliquity

- Earth's tilt is roughly 23.45 degrees perpendicular relative to the Elliptical Plane
  - Roughly point's to Polaris
- Earth's precesses
   (wobbles) leads to
   variation of up to 1
   degree every 72
   years



#### Plane of Orbit and tilt

- Earth orbits the sun along the orbital plane
- Earth spins on its axis
   which is about 23.45
   degrees in relation to the
   plane
- Moon rotates around the Earth about 5 degrees of the Earth's Equatorial plane



## The Tropics and Polar Circles



## The Solstices and Equinoxes

- Winter Solstice (Roughly December 21)
  - Maximum southern declination
- Summer Solstice (Roughly June 21)
  - Maximum northern declination
- Equinoxes (Roughly March 21 for Vernal and September 21 for Autumnal)
  - Sun on the Celestial Equator



## Seasonal Changes

- Seasonal Variations due to tilt of the Earth
  - NOT distance from the sun
- Seasonal variations dependent upon amount of sunlight



#### Insolation

- INcoming SOLar radiATION
- Insolation refers to the amount of solar radiation that the Earth's atmosphere and surface receives
  - Only about half of insolation reaches Earth's surface
    - Rest is absorbed by particles in the air or reflected



### Electromagnetic Spectrum

- The Sun releases electromagnetic energy
  - 8% UV, X-Ray, Gamma Ray
  - 47% Visible Light
  - 45% Infrared
- Transfers energy to the Earth to regulate temperature
  - Temperature is a measure of Kinetic Energy



#### Global Net Radiation

 Net Radiation = Incoming Shortwave Radiation – Outgoing Longwave Radiation







#### Seasonal Variations in Insolation

Seasonality: the changes in the Sun's position above the horizon and daylengths during the year



# Sun's Direct and Indirect light at Equinox and Solstice





## Effect of Direct vs. Indirect Sunlight



## The Sun's Daily Path

- Sphericity
  - Different latitudes receive different amounts of energy on the same day.
- As Earth moves around the Sun the impact of the tilt becomes more pronounced
  - At Winter Solstice the Sun's zenith is at its most Southerly point leading to the shortest day of the year
  - At the Summer Solstice the Sun's zenith is the most northerly leading to the longest day of the year



#### The Analemma

 Variation in the sun's position throughout the course of the year from a fixed point at the same solar time



Why does this all matter? Ex. Greenhouse

Effect



Why does this all matter?

Ex. Sun's
Influence
on Polar Ice
Caps



# Why does this all matter? Ex. Species-Energy Theory

